On the Dark Side of the Coin:
Characterizing Bitcoin use for lllicit Activities
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Imagine you could exchange any sum of money,
worldwide, instantly, and effortlessly...
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Imagine you could exchange any sum of money,
worldwide, instantly, and effortlessly...

I can work
with that.

..beyond authorities’ control.
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What kind of illicit activities is Bitcoin used for?

Scams Ransomware Money laundering

\ e

Darknet markets Sextortion

'} Silk Road
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Bitcoin use for illicit activities is widespread and turns
over large sums of money.

These activities have increasingly negative societal
effects, affecting large number of victims, often
preying on the weak.

Therefore, we argue that it is important to
shine a light on the Bitcoin patterns associated with
different illicit activities.
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Therefore, we argue that it is important to
shine a light on the Bitcoin patterns associated with
different illicit activities.
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Contributions

- High-level characterization of the transactions received by the Bitcoin
addresses reported to the Bitcoin Abuse Database (2017-2022)

» Aggregate basis
 Per-category basis
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Contributions

« Temporal analysis that captures
* Long-term trends
» Weekly patterns (per category)
 Correlations with the first report date (per category)
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Contributions

- Analyze the outflow of bitcoins from reported addresses
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Methodology
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Aggregate High-Level Characterization

« How successful is each address?
e« Model of the tail distribution
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How Successful is Each Address? / High Skew

« All 83k addresses received 31M bitcoins
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How Successful is Each Address? / High Skew

£ 100%-
£ ]
b

 All 83k addresses received 31M bitcoins <2 .
)

« Top-10 together received 55% = 50%-.
©

» Top-100 together received 96% E

» Top-1000 together received 99.8% O 0% _'.

1 10 100 1k 10k 100k
Rank
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How Successful is Each Address? / Big Hitters

Table 4.1: Overview of the top-10 highest receiving reported addresses.

ﬁ;,;zl]\ red }\g%(él;m Category Description

3,048,040 | 40.0 Other Trading investment scam.

2,845,086 | 18.0 Other Foreign exchange trading scam, “investment in terror".
2,009,608 | 25.0 Other “Investment in terror”, begs for treatment money.
1,815,619 | 800 Other “Investment in terror".

1,535,341 | 45.0 Other “Investment in terror".

1,459,182 | 160 Ransomware| “Investment in terror".

1,378,975 | 800 Other “Investment in terror".

1,259,824 | 0.50 Other “Investment in terror”.

1,030,376 | 505 Other “Inhumane” bank account theft via remote desktop.
724,340 1,150 Other “Investment in terror”, begs for treatment money.
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How Successful is Each Address? / Big Hitters

Table 4.1: Overview of the top-10 highest receiving reported addresses.

FBQ"FEI]\ ed {\g?g?n Category Description

3,048,040 | 40.0 Other Trading investment scam.

2,845,086 | 18.0 Other Foreign exchange trading scam, " investment in terror .
2,009,608 | 25.0 Other “Investment in terror”, begs for treatment money.
1,815,619 | 800 Other “Investment in terror".

1,535,341 | 45.0 Other “Investment in terror".

1,459,182 | 160 Ransomware| “Investment in terror".

1,378,975 | 800 Other “Investment in terror”.

1,259,824 | 0.50 Other “Investment in terror".

1,030,376 | 505 Other “Inhumane” bank account theft via remote desktop.
724,340 1,150 Other “Investment in terror”, begs for treatment money.

Top address has received 3M bitcoins ~ $79B Organized Bitcoin scam group

« Comparable to the GDP of Luxemburg « Worldwide

« Trading investment scam  "Investment in terror"
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How Successful is Each Address? / Big Hitters

Table 4.1: Overview of the top-10 highest receiving reported addresses.

Received | Median _
[BTC] (BTC] Category Description
3,048,040 | 40.0 Other Trading investment scam.
2,845,086 | 18.0 Other Foreign exchange trading scam, “investment in terror".
2,009,608 | 25.0 Other “Investment in terror”, begs for treatment money.
1,815,619 | 800 Other “Investment in terror".
1,535,341 | 45.0 Other “Investment in terror”.
1,459,182 | 160 Ransomware| “Investment in terror".
1,378,975 | 800 Other “Investment in terror".
1,259,824 | 0.50 Other “Investment in terror".
1,030,376 | 505 Other “Inhumane” bank account theft via remote desktop.
724340 | 1,150 | Other “Investment in terror", begs for treatment money.
Top address has received 3M bitcoins ~ $79B Organized Bitcoin scam group
« Comparable to the GDP of Luxemburg  Worldwide
« Trading investment scam called "CapitalBullTrade" « "Investment in terror"
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How Successful is Each Address?
/ The Most Common Cases
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How Successful is Each Address?
/ The Most Common Cases

1.0 }
I 0
0.8 ‘ 206%
0.6~ QS
o S
2041 679 &
Among the addresses that received 0.2- ~
some funds, most received 0.01-100 '
bitcoins (~ $260—$2.6M). 0.0-.

16°40-2160 162 10% 10
Bitcoins

LINKOPING
TR e



How Successful is Each Address?
/ Heavy-Tailed Distribution

The high skew previously witnessed suggest a heavy-tailed distribution.

LINKOPING
TR e



How Successful is Each Address?
/ Heavy-Tailed Distribution

* The CCDF confirms this T
S

©10-4.0-210° 102 10% 106
Bitcoins
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How Successful is Each Address?
/ Heavy-Tailed Distribution

- The curvature toward the end suggest that the =~ 5107
tail is not a power law 1074

©10-4.0-210° 102 10% 106
Bitcoins
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Model of the Tail Distribution

100
1071 .
] “Q-
10—2_; \::.‘\s%
W e,
9 10_3'5 —— Empirical \\
10-4 Power \\
ELELE Power + Cutoff \
10-5 Lognormal :
Stretched Exponential
_6 . , . , . .
10 16747 16-2° 100 102 104 1oe
Received Bitcoins in total
Distribution f(x) Ymin | Shape parameter(s) KS
Power law f(x)=Cx"" 1 a = 1.35 0.057
Power + Cutoff f(x) = Cx—%e*/P 1 a=136,=471-10"7 | 0.099
]Jn‘.f:-'\‘:
Lognormal 1.e a7 8372 | u=9.72,0 =217 0.035
Stretched Exponential ABxP—le—Ax" 9,444 | B =10.30 0.036
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Model of the Tail Distribution

109 . .
| Lognormal and stretched exponential gave best fit for
1071 N . .
their range, but only cover the very end of the tail.
102 \\3_,’{}.
g 10_3‘; Empirical
_4 - Power
10 JRCTIeT Power + Cutoff
10-5- Lognormal
| Stretched Exponential
106

1074 10-2 10° 102 10% 10°
Received Bitcoins in total

Distribution f(x) Ymin | Shape parameter(s) KS

Power law f(x) =Cx" 1 a = 1.35 0.057

Power + Cutoff f(x) = Cx— e */P 1 a=136,=471-10"7 | 0.099
Inx—p)=

Lognormal 1.e7 T 8372 | u=972,0 =217 0.035

Stretched Exponential ABxP—1e—Ax" 9,444 | B =0.30 0.036
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Model of the Tail Distribution

100'E
1071 _
1072
g 10_3‘; Empirical
_a] - Power . . . .
107 ... power + Cutoff The power-law with exponential cutoff fits best visually,
10-5- Lognormal
| .~ Stretched Exponential but the pure power-law has a lower Kolmogorov-
10-°

16-4 16-2 100 107 10 10°  Smirnow distance.

Received Bitcoins in total

Distribution f(x) Ymin | Shape parameter(s) KS

Power law f(x) =Cx" 1 a = 1.35 0.057

Power + Cutoff f(x) = Cx— e */P 1 a=136,=471-10"7 | 0.099
Inx—p)=

Lognormal 1.e7 T 8372 | u=972,0 =217 0.035

Stretched Exponential ABxP—1e—Ax" 9,444 | B =0.30 0.036
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Category-Based High-Level Characterization

* High-level comparison
« Transactions-based analysis

« Report frequencies
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High-Level Comparison

N Reports W Bitcoins #2222 USD (26k) B USD (daily) EEEUSD (min) E==2USD (max)
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Note: log-scale
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High-Level Comparison

I Reports WM Bitcoins #2222 USD (26k) RS USD (daily) EEEUSD (min) E==2USD (max)
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* Blackmail scam and Sextortion are the most highly reported (red) but also among the three lowest receiving
categories (blue).

* Ransomware, Darknet markets, and particularly Other receive much more (blue), but are reported less (red).
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High-Level Comparison

I Reports I Bitcoins 2228 USD (26k) B USD (daily) B

1USD (min) E==USD (max)
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* Blackmail scam and Sextortion are the most highly reported (red) but also among the three lowest receiving
categories (blue).

» Ransomware, Darknet markets, and particularly Other receive much more (blue), but are reported less (red).
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Fraction of Addresses Not Attracting Any Funds

00 | — e
0.8
/' -—— Sextortion
, 0.6 | Blackmail scam
8 —— Ransomware
0.4 L
Bitcoin tumbler
0.2 B Other
i i Darknet markets
0.0 | | | | | .
10~% 102 10° 10¢ 10* 10°

Received bitcoins in total

Fraction receiving no bitcoins:

» Sextortion 03%
e Blackmail scam 79%
« Ransomware 72%
e Bitcoin tumbler 12%
e Other 10%
e Darknet markets 6%
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Distribution comparisons

 Per-category basis, the CCDFs become significantly more power-law-like

10% e
1074
LID_ 10-24 7 Other o e
@) Bitcoin tumbler \\ """"""
O 10-3 Darknet markets ™
—— Ransomware ~
_4 Blackmail scam
1077 . Sextortion ~

1074 1072 10° 102 10* 10°
Received bitcoins in total
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Distribution comparisons

« Power-law fitting confirms this

Table 4. Power-law fitting of per-category CCDFs.

Category | Slope estimate Confidence interval
Tmin | @ (0) 95%
Sextortion | 1 1.423 (0.041) | « 4 0.000518
Blackmail | 1 1.419 (0.013) | & £ 0.000161
Ransomw. | 1 1.388 (0.013) | & +0.000234
Darknet |1 1.309 (0.019) | @ +0.00101
Tumbler |1 1.391 (0.016) | & = 0.000612
Other 1 1.329 (0.005) | a £ 0.0000851
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Distribution comparisons

 The slopes are similar, instead the difference lies in the relative shift to each other

O' ................................
L Table 4. Power-law fitting of per-category CCDFs.
-1
1007 Category | Slope estimate Confidence interval
LlD_ 10_2 [ Other ., Lmin | & (0) 95%
(@) Bitcoin tumbler \\ ''''''''' Sextortion | 1 1.423 (0041) o £ 0.000518
o 10-3 Darknet markets ™. Blackmail |1 | 1.419 (0.013) | + 0.000161
— Ransomware Ransomw. 1 | 1.388 (0.013) | @ + 0.000234
10-4] Blackmail scam Darknet |1 | 1.309 (0.019) | a =+ 0.00101
-— - Sextortion ~.
| | | | | | Tumbler |1 1.391 (0.016) | & 4= 0.000612
10~ 10— 10° 10° 10 10° Other |1 | 1.329 (0.005) | a = 0.0000851
Received bitcoins in total
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Transactions-Based Analysis

Number of transactions received

« Ransomware

« Darknet markets

10%
102

195

=6

1072 10
« Bitcoin tumbler

10°
« Blackmail scam

104
102

e

10 5-¢

102102 105 14676102 102 106

« Sextortion « Other
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102_

— - 104' i
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1955

_1..-I . ﬁ--l 1 0. -J . : 2'-.
0-2 102 10° 010—610-2 102 10°
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Transactions-Based Analysis

« Ransomware « Darknet markets

104 sa: 10% B
0] == : SH LS 0| st -
1Q_Lo-filo-z 102 10° 1010-6 0-2 102 106

« Bitcoin tumbler « Blackmail scam
104 = .- 104 -
0 - EEER s - 0] === =i -
1066762107 106 466167 107 10°

« Sextortion « Other
104_

. - 104'
102 ﬁ 102!

ol = % - 0. _J . __-
1010’-6 0-2 102 10° 1010—610—2 102 10°
Received bitcoins in total

* The first four are similar, with a clear
cluster receiving up-to 100 bitcoins spread
over up-to 1K incoming transactions

Number of transactions received
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e Sextortion addresses receive fewer bitcoins
and fewer transactions

Transactions-Based Analysis

Number of transactions received

« Ransomware
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1Q_Lo-filo-z 102 106 1010-6 0-2 102 10°
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Transactions-Based Analysis

« Ransomware « Darknet markets

104 sa: 10% B
0] == =i- - 0| st -
106-670-7 107 166 *%0-70-7 102 10° 10*
« Bitcoin tumbler « Blackmail scam
104 =, 10% — g
v SR o
0 - EEER s - 0] === =i -
10 5-5 102 10 10° 10575 1072 102 10°
« Sextortion « Other

104‘ el 104'
102 ﬁ 102!

ol % - 0] _J . ';".
1010—6 10-2 102 10° 1010—6 102 102 106
Received bitcoins in total

102

» “Other” includes many of the highest
receiving addresses

Number of transactions received
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Number of abuse reports

103~

1Q°

103_

Report Frequencies

« Ransomware

10-

« Darknet markets
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6102102 10° 10
« Bitcoin tumbler

=670-2 102 10°
« Blackmail scam
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» Sextortion

« Other
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Received bitcoins in total

LINKOPING
UNIVERSITY




Report Frequencies

« Ransomware « Darknet markets
103+ - 103+ = -
B 100 ""_'___.:__‘-I_'_ 100 ".-..'-...... ' —'I_--
o 10-610-2102 106 ~10°610-2102 10°
« Low-effort attacks targeting many users @ 103, Drecoin tumbler 10 - Blackmail scam
(Blackmail scams and Sextortions) have é %‘ '
. © 0. 5 " '_.-_ 0 s =
much higher report frequency & 195157107 160 1010 = 1—0 TR
GL) « Sextortion « Other
o 103+ == 103+
é . ..s‘....__;-'- 100, S . -
010 6102102 10° |710" 610’-2 102 10°

Received bitcoins in total
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Report Frequencies

« Ransomware « Darknet markets
103+ = 103 S

o] =E = :
1010 610 2104 10 1010 610 210 106

« Bitcoin tumbler « Blackmail scam
S 103-. N

103_

!
QY

1 _- 1 0 e . --_
O10 610 102 106 010 610 =202 10

« Sextortion « Other

» Addresses best at attracting funds are not ™ 105

highly reported

Number of abuse reports

0l -“;:*______.;__I : . '-:.- 0 L - 1
1010'—610—2 102 10° 1010 —670-2 102 10°
Received bitcoins in total
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Temporal Analysis

« Longitudinal timeline
* Time of the week

 Initial report date analysis
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Longitudinal Timeline / High-Level

-104
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Received bitcoins daily
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()
o
o

2017 2018 2019 2020 2021 2022

 Bitcoin Abuse Database was created in 2017 and gained popularity in late 2018.
Remain relatively steady at an order of 100’s per day.
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Longitudinal Timeline / High-Level

-104
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Number of reports daily
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10081l

Received bitcoins daily
|_I
o

-
o
o

2017 2018 2019 2020 2021 2022

* Bitcoin Abuse Database was created in 2017 and gained popularity in late 2018.
Remain relatively steady at an order of 100’s per day.

* A substantial (roughly 100x) increase to 10,000 bitcoins received per day, over a
three-year period (2019—2022).
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Longitudinal Timeline / Noteworthy Spikes

The biggest spike was on April 16th, 2020.
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Longitudinal Timeline / Noteworthy Spikes

=
o
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« 11K reports (roughly 100x daily average)
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Longitudinal Timeline / Noteworthy Spikes

=
o
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« Both US and Australian governments warn
about a particular style of scam email around
the same time
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Longitudinal Timeline / Noteworthy Spikes
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« A lot of the reports are clearly talking about
the same type of attack

Received bitcoins daily
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Time of the Week

e Other - Darknet Blackmail
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Time of the Week

mimmms Other - Darknet Blackmail
—— Ransomware - Tumbler ———-- Sextortion

» Much bigger volumes daytime/evenings (UTC)

103

Received bitcoins hourly
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Time of the Week

» More funds being transferred during weekdays

than weekends

s Other - Darknet Blackmail
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Time of the Week

 Bitcoin tumbler has the least pronounced
pattern, possibly suggesting some level of

automation

Received bitcoins hourly

s Other - Darknet Blackmail
—— Ransomware|------ Tumbler |—--- Sextortion
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Time of the Week

o Other - Darknet Blackmail
—— Ransomware ------ Tumbler ———-- Sextortion
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Initial Report Date Analysis

1.0y . Sextortion
R Other
0.8;
Darknet markets 7%~
. 0.6 B!acklmall scam
() Bitcoin tumbler
First report
0-2- /
0.0

12m 9m -6m -3m 0 3m 6m 9m 12m
Relative time (months)
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Initial Report Date Analysis

« Addresses are reported around the time that 1.0

E : ) N -—- Sextortion
their incoming transaction count is high 0.gl ~ Other
' Darknet markets
Bl '

L 0.6 .ack.mall scam

a Bitcoin tumbler | 7

© 0.4 — Ransomware / f‘

/ | First report

0.2

=

12m 9m -6m -3m 0 3m 6m 9m 12m
Relative time (months)
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Initial Report Date Analysis

1.01 ___ sextortion
0.8 g:;(ljr:et markets
 Indicating, the first report often is made around | .
. , ] L 0.6 ackmail scam :
the time of the abuse’s highest activity a Bitcoin tumbler
O :
0.4

First report

e

12m 9m -6m -3m 0 3m 6m 9m 12m
Relative time (months)

0.2
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Initial Report Date Analysis

1.0
0.8-
L 0.6
o
« This may be a reflection of a significant portion 0.4
of the addresses only being used for specific 0.2,
attacks

- —- Sextortion

mm Other
Darknet markets
Blackmail scam

Bitcoin tumbler

0.0:

First report

e
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Relative time (months)
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Initial Report Date Analysis

1.0;

- —- Sextortion
e Other
0.8 Darknet markets
L 0.6 Blackmail scam
) Bitcoin tumbler
@ /7
0.4{|—— Ransomware| .-z
G First report
0.2; /
: 0.0-
 Darknet markets follow this pattern the least, e e 5 T3m
Ransomware the most Relative time (months)
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Initial Report Date Analysis

1.0y . Sextortion
mie Other
0.8 Darknet markets
 Most transactions take place before the first L 0.6 Blackmail scam
report (except Darknet markets) 5 50% Bitcoin tumbler
0.4+

First report

e

12m 9m -6m -3m 0 3m 6m 9m 12m
Relative time (months)

0.2
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Initial Report Date Analysis

1.0} . Sextortion
mimme Other
0.8
Darknet markets

0.6- Blackmail scam |
w Y- o ’
0O 50% Bitcoin tumbler
© 0.4

» Suggesting limited effectiveness to using such
reports to “ban” addresses 0.2

First report

e

12m 9m -6m -3m 0 3m 6m 9m 12m
Relative time (months)
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Following the Money

 Why
« Methodology
* One-step concentration or dispersion

e Multi-step analysis
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Why?

10°f x Ransomware 2
= ; . Darknet market '
§ 10™ . Bitcoin tumbler

 Nearly all reported addresses have sent as many < 102 Blackmail sea
bitcoins as they received, leaving a balance of 2 - Sextortion
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Why?

10°f x Ransomware . 2

= : . Darknet market -
5! 10%1 . Bitcoin tumbler
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» Suggesting these addresses are typically not used 21072

to store their gains A, P £
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Received bitcoins in total
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Methodology

» Scope of analysis: Studying and comparing potential concentration or dispersion for
different abuse categories
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Methodology

« Challenging case and our solution: Transactions may have multiple inputs and outputs
— a melting pot. For this part of the analysis, we only use transactions where the sender and
receiver is known.

[Transaction \ /Transaction\
a B 4 w
50 BTC—-)[ In ] Out > 0.5BTC 0.5BTC==> In (Out}—) 0.8BTC
L ) \ )
M) ~—
Out > 49.5 BTC 0.1 BTC ™ In
R e
\_ Y, —_—
0.2 BTC=—=> |n
o _J
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One-Step Concentration or Dispersion

All addresses from All receiving addresses
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One-Step Concentration or Dispersion
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(b) Rank plot

» The overwhelming majority are not visibly related when tracing the money one-step (97-99%)

« Suggesting high dispersion
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One-Step Concentration or Dispersion

All addresses from
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(b) Rank plot

- However, all categories has at least one address with a node in-degree over 100
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One-Step Concentration or Dispersion
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(a) CDF (b) Rank plot

« Significant difference between categories

LINKOPING
II." UNIVERSITY



Multi-Step Analysis

Random addresses

from: .
Ransomware ~andom flow of small transactions « Is money shuffled around a couple of steps

’ . . only to collect a few steps later?

)50 | . « We tracked an equal amount of “penny flows”
as bitcoins were moved five steps deep

... » 250 random reported address from each
Blackmail scam Category
250 « Random “penny flow” from each
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Multi-Step Analysis

Random addresses

from: .
Ransomware ~andom flow of small transactions « Is money shuffled around a couple of steps
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)50 | . * We tracked an equal amount of “penny flows”
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Blackmail scam Category
250 « Random “penny flow” from each

LINKOPING
huuee,



Multi-Step Analysis

Random addresses

from: .
Ransomware ~andom flow of small transactions « Is money shuffled around a couple of steps

’ . . only to collect a few steps later?

)50 | . « We tracked an equal amount of “penny flows”
as bitcoins were moved five steps deep

... « 250 random reported address from each
Blackmail scam category
250 1 « Random “penny flow” from each
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Multi-Step Analysis

Random addresses

from:

Ransomware Random flow of small transactions 1.00 e ———— 164 » . .
) St s = N T Bitcoin tumbler
‘ ' . 0.951 iy s B . (TR =S —— Ransomware
090 -1-——-  Blackmail scam g ——_ Other
250 | a oesl | | Darknet markets Y Darknet markets
> R -——- Other _g - Blackmail scam
... 0.801". —— Ransomware S 2 -
Blackmail scam 0.754 -~ Bitcoin tumbler !
1 —
250 . ® 00 1 2 4 8 16 1 10 100 1k 10k
Node degree Rank
(a) CDF (b) Rank plot

» Fewer addresses with the minimum in-degree, compared to the one-step analysis (from 97-99% to 83-89%)

 Bitcoin tumbler stands out with higher node degrees. Suggesting fewer actors involved in tumbling.

« Perhaps because of the higher effort required, compared to Blackmails scams (which has the lowest node
degree)
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Multi-Step Analysis

Random addresses

from:
Ransomware

Random flow of small transactions
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10k

* Bitcoin tumbler stands out with higher node degrees. Suggesting fewer actors involved in tumbling.

« Perhaps because of the higher effort required, compared to Blackmails scams (which has the lowest node
degree)
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Contributions

- High-level characterization of the transactions received by the Bitcoin
addresses reported to the Bitcoin Abuse Database (2017-2022)

» Aggregate basis
 Per-category basis
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Contributions

« Temporal analysis that captures
* Long-term trends
» Weekly patterns (per category)
 Correlations with the first report date (per category)
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Contributions

- Analyze the outflow of bitcoins from reported addresses
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On the Dark Side of the Coin:
Characterizing Bitcoin use for lllicit Activities
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